LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Polarimetry of photon echo on charged and neutral excitons in semiconductor quantum wells

Photo by hckmstrrahul from unsplash

Coherent optical spectroscopy such as four-wave mixing and photon echo generation deliver rich information on the energy levels involved in optical transitions through the analysis of polarization of the coherent… Click to show full abstract

Coherent optical spectroscopy such as four-wave mixing and photon echo generation deliver rich information on the energy levels involved in optical transitions through the analysis of polarization of the coherent response. In semiconductors, it can be applied to distinguish between different exciton complexes, which is a highly non-trivial problem in optical spectroscopy. We develop a simple approach based on photon echo polarimetry, in which polar plots of the photon echo amplitude are measured as function of the angle φ between the linear polarizations of the two exciting pulses. The rosette-like polar plots reveal a distinct difference between the neutral and charged exciton (trion) optical transitions in semiconductor nanostructures. We demonstrate this experimentally by photon echo polarimetry of a CdTe/(Cd, Mg)Te quantum well. The echoes of the trion and donor-bound exciton are linearly polarized at the angle 2φ with respect to the first pulse polarization and their amplitudes are weakly dependent on φ. While on the exciton the photon echo is co-polarized with the second exciting pulse and its amplitude scales as cosφ.

Keywords: polarimetry photon; photon echo; semiconductor; spectroscopy

Journal Title: Scientific Reports
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.