LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Successively accelerated ionic wind with integrated dielectric-barrier-discharge plasma actuator for low-voltage operation

Photo from wikipedia

Electrohydrodynamic (EHD) force is used for active control of fluid motion and for the generation of propulsive thrust by inducing ionic wind with no moving parts. We propose a method… Click to show full abstract

Electrohydrodynamic (EHD) force is used for active control of fluid motion and for the generation of propulsive thrust by inducing ionic wind with no moving parts. We propose a method of successively generating and accelerating ionic wind induced by surface dielectric-barrier-discharge (DBD), referred to as a DBD plasma actuator with multiple electrodes. A conventional method fails to generate unidirectional ionic wind, due to the generation of a counter ionic-wind with the multiple electrodes DBD plasma actuator. However, unidirectional ionic wind can be obtained by designing an applied voltage waveform and electrode arrangement suitable for the unidirectional EHD force generation. Our results demonstrate that mutually enhanced EHD force is generated by using the multiple electrodes without generating counter ionic-wind and highlights the importance of controlling the dielectric surface charge to generate the strong ionic wind. The proposed method can induce strong ionic wind without a high-voltage power supply, which is typically expensive and heavy, and is suitable for equipping small unmanned aerial vehicles with a DBD plasma actuator for a drastic improvement in the aerodynamic performance.

Keywords: voltage; wind; plasma actuator; dielectric barrier; ionic wind

Journal Title: Scientific Reports
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.