LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improved methods for the detection of histone interactions with peptide microarrays

Photo by christiannkoepke from unsplash

Histone post-translational modifications contribute to chromatin function largely through the recruitment of effector proteins that contain specialized “reader” domains. While a significant number of reader domains have been characterized for… Click to show full abstract

Histone post-translational modifications contribute to chromatin function largely through the recruitment of effector proteins that contain specialized “reader” domains. While a significant number of reader domains have been characterized for their histone binding specificities, many of these domains remain poorly characterized. Peptide microarrays have been widely employed for the characterization of histone readers, as well as modifying enzymes and histone antibodies. While powerful, this platform has limitations in terms of its sensitivity and they frequently miss low affinity reader domain interactions. Here, we provide several technical changes that improve reader domain detection of low-affinity interactions. We show that 1% non-fat milk in 1X PBST as the blocking reagent during incubation improved reader-domain interaction results. Further, coupling this with post-binding high-salt washes and a brief, low-percentage formaldehyde cross-linking step prior to the high-salt washes provided the optimal balance between resolving specific low-affinity interactions and minimizing background or spurious signals. We expect this improved methodology will lead to the elucidation of previously unreported reader-histone interactions that will be important for chromatin function.

Keywords: detection; histone interactions; reader; low affinity; histone; peptide microarrays

Journal Title: Scientific Reports
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.