LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of Pre-Anthesis Drought, Heat and Their Combination on the Growth, Yield and Physiology of diverse Wheat (Triticum aestivum L.) Genotypes Varying in Sensitivity to Heat and drought stress

Photo by priscilladupreez from unsplash

Independent and combined drought and heat stress negatively affect wheat yield and physiology. The present study was aimed to quantify effects of Drought [D], heat [H] and combined heat and… Click to show full abstract

Independent and combined drought and heat stress negatively affect wheat yield and physiology. The present study was aimed to quantify effects of Drought [D], heat [H] and combined heat and drought [HD] during reproductive stage on wheat yield and to identify physio-biochemical traits which were strongly associated with improved yield and tolerance of wheat under stressful conditions. One hundred and eight elite diverse wheat genotypes were exposed to [H], [D] and [HD] treatments from heading till maturity. Grain yield was reduced by 56.47%, 53.05% and 44.66% under [HD], [H] and [D] treatment, respectively. The [HD] treatment affects the grain yield by reducing metabolism and mobilization of reserves to developing grains and leaves. Disintegration of membrane structure, chlorophyll and protein molecules was higher under [H] stress than [D] stress while water status of genotypes and sink strength was more affected by [D] than [H] stress. Multivariate analysis showed a strong correlation of chlorophyll content before and after anthesis, water-soluble carbohydrates (WSC), proline content (PC) and all other studies agronomic and physiological traits with grain yield while days to anthesis (DTA) and days to maturity (DTM) were negatively associated with grain yield under stress showing advantage of early maturity during stress. Traits having a major contribution in the first two principal components under different stress treatments may lead to improved varieties with heat and drought stress tolerance. To best of over knowledge, the present study is the first detailed study which used physiological and biochemical traits to explain the variation in grain yield and related traits in diverse wheat germplasm.

Keywords: drought heat; wheat; physiology; stress; yield; heat

Journal Title: Scientific Reports
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.