LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Analysis of extracellular vesicles generated from monocytes under conditions of lytic cell death

Photo by matmacq from unsplash

Extracellular vesicles (EVs) are an important class of membrane-bound structures that have been widely investigated for their roles in intercellular communication in the contexts of tumor progression, vascular function, immunity… Click to show full abstract

Extracellular vesicles (EVs) are an important class of membrane-bound structures that have been widely investigated for their roles in intercellular communication in the contexts of tumor progression, vascular function, immunity and regenerative medicine. Much of the current knowledge on the functions of EVs pertains to those derived from viable cells (e.g. exosomes and microvesicles) or apoptotic cells (e.g. apoptotic bodies) whilst the generation of EVs from dying cells under non-apoptotic conditions remains poorly characterized. Herein, the release of EVs from THP-1 monocytes under conditions of primary necrosis, secondary necrosis and pyroptosis, was investigated. A comprehensive analysis of THP-1-derived EVs revealed that cells undergoing lytic forms of cell death generated a high number of EVs compared with viable or apoptotic cells in vitro. Differential centrifugation via 16,000 g and 100,000 g revealed that dying THP-1 cells release both medium and small EVs, respectively, consistent with the known characteristics of microvesicles and/or exosomes. In addition, large EVs isolated via 2000 g centrifugation were also present in all samples. These findings suggest that lytic cell death under both sterile and non-sterile inflammatory conditions induces monocytes to generate EVs, which could potentially act as mediators of cell-to-cell communication.

Keywords: extracellular vesicles; death; monocytes conditions; cell death; lytic cell

Journal Title: Scientific Reports
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.