LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Interference effects in quantum-optical coherence tomography using spectrally engineered photon pairs

Photo from wikipedia

Optical-coherence tomography (OCT) is a technique that employs light in order to measure the internal structure of semitransparent, e.g. biological, samples. It is based on the interference pattern of low-coherence… Click to show full abstract

Optical-coherence tomography (OCT) is a technique that employs light in order to measure the internal structure of semitransparent, e.g. biological, samples. It is based on the interference pattern of low-coherence light. Quantum-OCT (QOCT), instead, employs the correlation properties of entangled photon pairs, for example, generated by the process of spontaneous parametric downconversion (SPDC). The usual QOCT scheme uses photon pairs characterised by a joint-spectral amplitude with strict spectral anti-correlations. It has been shown that, in contrast with its classical counterpart, QOCT provides resolution enhancement and dispersion cancellation. In this paper, we revisit the theory of QOCT and extend the theoretical model so as to include photon pairs with arbitrary spectral correlations. We present experimental results that complement the theory and explain the physical underpinnings appearing in the interference pattern. In our experiment, we utilize a pump for the SPDC process ranging from continuous wave to pulsed in the femtosecond regime, and show that cross-correlation interference effects appearing for each pair of layers may be directly suppressed for a sufficiently large pump bandwidth. Our results provide insights and strategies that could guide practical implementations of QOCT.

Keywords: coherence tomography; optical coherence; interference; photon pairs

Journal Title: Scientific Reports
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.