Cell membrane phospholipids regulate various biological functions. We previously reported enzymatic fluorometric methods for quantifying phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, sphingomyelin, phosphatidylglycerol and cardiolipin. In the present report, a new… Click to show full abstract
Cell membrane phospholipids regulate various biological functions. We previously reported enzymatic fluorometric methods for quantifying phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, sphingomyelin, phosphatidylglycerol and cardiolipin. In the present report, a new enzymatic fluorometric assay was developed for quantifying phosphatidylinositol. These simple, sensitive and high-throughput methods enabled us to quantify all major phospholipid classes in cultured cells and intracellular organelles. By conducting comprehensive quantitative analyses of major phospholipid classes, we demonstrated that the contents of phospholipid classes in HEK293 cells changed with cell density and that overexpression of phosphatidylinositol synthase or CDP-diacylglycerol synthase significantly affected the phospholipid compositions of microsomal and mitochondrial membranes. These enzymatic fluorometric assays for measuring all major phospholipid classes may be applicable to tissues, fluids, lipoproteins, extracellular vesicles and intracellular organelles of many organisms and will further our understanding of cellular, physiological and pathological processes.
               
Click one of the above tabs to view related content.