LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Changes to vertebrate tissue stable isotope (δ15N) composition during decomposition

Photo from wikipedia

During carcass decomposition, tissues undergo biochemical changes: Cells autolyze, enteric microbes ferment cellular products, and tissues degrade. Ultimately, decomposition fluids are released as an ephemeral nitrogen (N) and carbon source… Click to show full abstract

During carcass decomposition, tissues undergo biochemical changes: Cells autolyze, enteric microbes ferment cellular products, and tissues degrade. Ultimately, decomposition fluids are released as an ephemeral nitrogen (N) and carbon source to the surrounding environment. However, decomposition fluids are δ15N-enriched relative to body tissues, leading to a disconnect between starting tissue composition and ending fluid composition. It remains largely unknown when or if tissues exhibit δ15N enrichment postmortem despite the importance of tissue stable isotopes to ecologists. To test our hypothesis that tissues would become progressively δ15N-enriched during decay, soft tissues and bone were collected from beaver carcasses at five time points. All soft tissues, including muscle, were significantly δ15N-enriched compared to fresh tissues, but were not as enriched as decomposition fluids. Tissue breakdown is initially dominated by anaerobic autolysis and later by microbe and insect infiltration, and partly explains decay fluid isotopic enrichment. We speculate that after rupture, preferential volatilization of δ15N-depleted compounds (especially ammonia) contributes to further enrichment. These results constrain the timing, rate, and potential mechanisms driving carcass isotopic enrichment during decay, and suggest that found carcasses (e.g., road kill) should be used with caution for inferring trophic ecology as decay can result in significant postmortem δ15N enrichment.

Keywords: decomposition fluids; tissue; tissue stable; composition; 15n enriched; decomposition

Journal Title: Scientific Reports
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.