LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quantum annealing for systems of polynomial equations

Numerous scientific and engineering applications require numerically solving systems of equations. Classically solving a general set of polynomial equations requires iterative solvers, while linear equations may be solved either by… Click to show full abstract

Numerous scientific and engineering applications require numerically solving systems of equations. Classically solving a general set of polynomial equations requires iterative solvers, while linear equations may be solved either by direct matrix inversion or iteratively with judicious preconditioning. However, the convergence of iterative algorithms is highly variable and depends, in part, on the condition number. We present a direct method for solving general systems of polynomial equations based on quantum annealing, and we validate this method using a system of second-order polynomial equations solved on a commercially available quantum annealer. We then demonstrate applications for linear regression, and discuss in more detail the scaling behavior for general systems of linear equations with respect to problem size, condition number, and search precision. Finally, we define an iterative annealing process and demonstrate its efficacy in solving a linear system to a tolerance of 10−8.

Keywords: quantum annealing; systems polynomial; annealing systems; polynomial equations

Journal Title: Scientific Reports
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.