Genes are the basic functional units of heredity. Differences in genes can lead to various congenital physical conditions. One kind of these differences is caused by genetic variations named single… Click to show full abstract
Genes are the basic functional units of heredity. Differences in genes can lead to various congenital physical conditions. One kind of these differences is caused by genetic variations named single nucleotide polymorphisms (SNPs). An SNP is a variation in a single nucleotide that occurs at a specific position in the genome. Some SNPs can affect splice sites and protein structures and cause gene abnormalities. SNPs on paired chromosomes may lead to fatal diseases so that a fertilized embryo cannot develop into a normal fetus or the people born with these abnormalities die in childhood. The distributions of genotypes on these SNP sites are different from those on other sites. Based on this idea, we present a novel statistical method to detect the abnormal distributions of genotypes and locate the potentially lethal genes. The test was performed on HapMap data and 74 suspicious SNPs were found. Ten SNP maps “reviewed” genes in the NCBI database. Among them, 5 genes were related to fatal childhood diseases or embryonic development, 1 gene can cause spermatogenic failure, and the other 4 genes were associated with many genetic diseases. The results validated our method. The method is very simple and is guaranteed by a statistical test. It is an inexpensive way to discover potentially lethal genes and the mutation sites. The mined genes deserve further study.
               
Click one of the above tabs to view related content.