LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Controlling the emission properties of solution-processed organic distributed feedback lasers through resonator design

Photo from wikipedia

Surface-emitting distributed feedback (DFB) lasers with both, resonator and active material based on solution-processable polymers, are attractive light sources for a variety of low-cost applications. Besides, the lasers should have… Click to show full abstract

Surface-emitting distributed feedback (DFB) lasers with both, resonator and active material based on solution-processable polymers, are attractive light sources for a variety of low-cost applications. Besides, the lasers should have competitive characteristics compared to devices based on high-quality inorganic resonators. Here, we report high performing all-solution-processed organic DFB lasers, consisting of water-processed photoresist layers with surface relief gratings located over the active films, whose emission properties can be finely tuned through resonator design. Their laser threshold and efficiency are simultaneously optimized by proper selection of residual resist thickness and grating depth, d. Lowest thresholds and largest efficiencies are obtained when there is no residual layer, while a trade-off between threshold and efficiency is found in relation to d, because both parameters decrease with decreasing d. This behaviour is successfully explained in terms of an overlap factor r, defined to quantify the interaction strength between the grating and the light emitted by the active film and traveling along it, via the evanescent field. It is found that optimal grating depths are in the range 100–130 nm (r ~ 0.5−0.4). Overall, this study provides comprehensive design rules towards an accurate control of the emission properties of the reported lasers.

Keywords: solution processed; emission; lasers resonator; emission properties; distributed feedback; design

Journal Title: Scientific Reports
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.