Spatially resolved analysis of uranium (U) isotopes in small volumes of actinide-bearing materials is critical for a variety of technical disciplines, including earth and planetary sciences, environmental monitoring, bioremediation, and… Click to show full abstract
Spatially resolved analysis of uranium (U) isotopes in small volumes of actinide-bearing materials is critical for a variety of technical disciplines, including earth and planetary sciences, environmental monitoring, bioremediation, and the nuclear fuel cycle. However, achieving subnanometer-scale spatial resolution for such isotopic analysis is currently a challenge. By using atom probe tomography—a three-dimensional nanoscale characterisation technique—we demonstrate unprecedented nanoscale mapping of U isotopic enrichment with high sensitivity across various microstructural interfaces within small volumes (~100 nm3) of depleted and low-enriched U alloyed with 10 wt% molybdenum that has different nominal enrichments of 0.20 and 19.75% 235U, respectively. We map enrichment in various morphologies of a U carbide phase, the adjacent γ-UMo matrix, and across interfaces (e.g., carbide/matrix, grain boundary). Results indicate the U carbides were formed during casting, rather than retained from either highly enriched or depleted U feedstock materials. The approach presented here can be applied to study nanoscale variations of isotopic abundances in the broad class of actinide-bearing materials, providing unique insights into their origins and thermomechanical processing routes.
               
Click one of the above tabs to view related content.