LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Construction of a ternary g-C3N4/TiO2@polyaniline nanocomposite for the enhanced photocatalytic activity under solar light

Photo by wander20 from unsplash

The combination of two or more semiconductor materials for the synthesis of new hybrid photocatalyst could be a good approach to enhance the visible light absorption, electron-hole (e−/h+) pair separation… Click to show full abstract

The combination of two or more semiconductor materials for the synthesis of new hybrid photocatalyst could be a good approach to enhance the visible light absorption, electron-hole (e−/h+) pair separation rate and photocatalytic decomposition of the organic contaminants. Herein, a facile in situ oxidative polymerization method has been used for the synthesis of visible light active g-C3N4/TiO2@polyaniline (g-C3N4/TiO2@PANI) nanocomposite for the decomposition of the congo red (CR) under the solar light irradiation. Prior to making the composite of TiO2 (P25) with g-C3N4 and polyaniline, a lamellar structure was generated onto the TiO2 brim by alkali hydrothermal treatment to enhance the surface area and adsorption properties. The PL and UV-visible analysis clearly showed the fast separation of the e−/h+ pair, and reduction in the bandgap energy of the g-C3N4/TiO2@PANI nanocomposite. The results revealed TiO2, PANI and g-C3N4 showed the synergestic behavior in the g-C3N4/TiO2@PANI nanocomposite and greatly enhanced the photocatalytic degradation of the CR. The photocatalytic decomposition of the CR was almost 100% for 20 mg/L at pH 5, 7 and 180 min. The reusability study of the spent catalyst showed the 90% degradation of CR after four consecutive cycles indicate that g-C3N4/TiO2@PANI nanocomposite is a stable and efficient catalyst. The high efficiency and reusability of the g-C3N4/TiO2@PANI nanocomposite could be attributed to the higher visible light absorption and sensitizing effect of the g-C3N4 and PANI.

Keywords: tio2; c3n4 tio2; pani nanocomposite; tio2 pani; c3n4

Journal Title: Scientific Reports
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.