Pinus densiflora (Korean red pine) is a species of evergreen conifer that is distributed in Korea, Japan, and China, and of economic, scientific, and ecological importance. Korean red pines suffer… Click to show full abstract
Pinus densiflora (Korean red pine) is a species of evergreen conifer that is distributed in Korea, Japan, and China, and of economic, scientific, and ecological importance. Korean red pines suffer from pine wilt disease (PWD) caused by Bursaphelenchus xylophilus, the pinewood nematode (PWN). To facilitate diagnosis and prevention of PWD, studies have been conducted on the PWN and its beetle vectors. However, transcriptional responses of P. densiflora to PWN have received less attention. Here, we inoculated Korean red pines with pathogenic B. xylophilus, or non-pathogenic B. thailandae, and collected cambium layers 4 weeks after inoculation for RNA sequencing analysis. We obtained 72,864 unigenes with an average length of 869 bp (N50 = 1,403) from a Trinity assembly, and identified 991 differentially expressed genes (DEGs). Biological processes related to phenylpropanoid biosynthesis, flavonoid biosynthesis, oxidation–reduction, and plant-type hypersensitive response were significantly enriched in DEGs found in trees inoculated with B. xylophilus. Several transcription factor families were found to be involved in the response to B. xylophilus inoculation. Our study provides the first evidence of transcriptomic differences in Korean red pines inoculated with B. xylophilus and B. thailandae, and might facilitate early diagnosis of PWD and selection of PWD-tolerant Korean red pines.
               
Click one of the above tabs to view related content.