Using the first-principles calculation based on density functional theory (DFT), the adsorption properties of nitrogen-based gases molecules (NH3, NO, NO2) on various metal (Li, Na, K, Rb, Cs, Ca, Sr,… Click to show full abstract
Using the first-principles calculation based on density functional theory (DFT), the adsorption properties of nitrogen-based gases molecules (NH3, NO, NO2) on various metal (Li, Na, K, Rb, Cs, Ca, Sr, Ba, Ni, La, Tl) decorated phosphorene systems have been studied systematically. The results show that all metal decorations can improve the adsorption strength of phosphorene to nitrogen-based gases molecules except for Tl decoration. Especially, the adsorption energy of NH3 molecule on Ni decorated phosphorene is 1.305 eV, and the adsorption energies of NO and NO2 on La decorated phosphorene can be up to 2.475 and 3.734 eV, respectively. In addition, after NO and NO2 adsorptions, the electronic and magnetic properties of some metal decorated phosphorenes change, indicating that the metal decorated phosphorenes have great potential in NO and NO2 detection.
               
Click one of the above tabs to view related content.