LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The inhibition effect mechanisms of four scale inhibitors on the formation and crystal growth of CaCO3 in solution

Photo by samaustin from unsplash

The experimentation, molecular dynamics simulation and DFT calculation were used to study the inhibition effects of four scale inhibitors, including polyacrylic acid (PAA), hydrolyzed polymaleic anhydride (HPMA), polyepoxysuccinic acid (PESA)… Click to show full abstract

The experimentation, molecular dynamics simulation and DFT calculation were used to study the inhibition effects of four scale inhibitors, including polyacrylic acid (PAA), hydrolyzed polymaleic anhydride (HPMA), polyepoxysuccinic acid (PESA) and polyaspartic acid (PASP), on formation and crystal growth of CaCO3 in solutions. According to concentrations of Ca2+ in solutions, the sequence of inhibition effects of scale inhibitors on formation of CaCO3 in the solution was PESA > PASP > HPMA > PAA. Characterization of CaCO3 crystals by XRD and a laser particle size analyzer indicated that the sequence of inhibition effects of scale inhibitors on crystal growth of CaCO3 in solutions was PESA > HPMA > PASP > PAA. Interaction energies between the scale inhibitor molecule and Ca2+, and between the scale inhibitor molecule and the CaCO3 (104) surface indicated that the difference of the inhibition effects was derived from the difference in the interaction energy. The results of DFT calculation indicated that the difference between the interaction energies of these inhibitors and Ca2+ was derived from differences of number and the Mulliken population values of the chemical bonds which formed between the inhibitor molecule and Ca2+ and between the inhibitor molecule and the CaCO3 surface.

Keywords: crystal growth; inhibition; growth caco3; scale inhibitors

Journal Title: Scientific Reports
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.