To achieve robust sEMG measurements in an EMG prosthetic system, this study proposes a surface electromyogram (sEMG) sensor with a novel electrode structure composed of two-layered conductive silicone with different… Click to show full abstract
To achieve robust sEMG measurements in an EMG prosthetic system, this study proposes a surface electromyogram (sEMG) sensor with a novel electrode structure composed of two-layered conductive silicone with different carbon concentrations. We hypothesized there is an optimal carbon concentration for achieving a large sEMG amplitude with robustness to external perturbation, and we empirically determined this optimal concentration. We produced fourteen sets of electrodes, with the weight ratio of carbon to silicone ranging from 1.7% to 4.0%. Using these electrodes, the user sEMG and electrical properties of the electrodes were measured. An external perturbation was applied on one side of the electrode to introduce a condition of unbalanced contact to the sEMG sensor. We defined an index of robustness for the sEMG sensor based on the signal-to-noise ratio in the balanced and unbalanced contact conditions. Based on the results of the robustness index, two optimal carbon concentrations, at weight ratios of 2.0%–2.1% and 2.6%–2.7%, were observed. Moreover, the double-peak property was correlated to the capacitance. Our results clearly demonstrate an optimal carbon concentration for robust sEMG measurements, and suggest that the robust measurement of sEMG is supported by the capacitance component of the sensor system.
               
Click one of the above tabs to view related content.