Root-knot nematodes (RKNs) are devastating parasites that infect thousands of plants. As RKN infection is facilitated by oesophageal gland effector genes, one such effector gene, Mi-msp2, was selected for a… Click to show full abstract
Root-knot nematodes (RKNs) are devastating parasites that infect thousands of plants. As RKN infection is facilitated by oesophageal gland effector genes, one such effector gene, Mi-msp2, was selected for a detailed characterization. Based on domain analysis, the Mi-MSP2 protein contains an ShKT domain, which is likely involved in blocking K+ channels and may help in evading the plant defence response. Expression of the Mi- msp2 gene was higher in juveniles (parasitic stage of RKNs) than in eggs and adults. Stable homozygous transgenic Arabidopsis lines expressing Mi-msp2 dsRNA were generated, and the numbers of galls, females and egg masses were reduced by 52–54%, 60–66% and 84–95%, respectively, in two independent RNAi lines compared with control plants. Furthermore, expression analysis revealed a significant reduction in Mi-msp2 mRNA abundance (up to 88%) in female nematodes feeding on transgenic plants expressing dsRNA, and northern blot analysis confirmed expression of the Mi-msp2 siRNA in the transgenic plants. Interestingly, a significant reduction in the reproduction factor was observed (nearly 40-fold). These data suggest that the Mi-msp2 gene can be used as a potential target for RKN management in crops of economic importance.
               
Click one of the above tabs to view related content.