LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Convolutional neural network for efficient estimation of regional brain strains

Photo by fakurian from unsplash

Head injury models are important tools to study concussion biomechanics but are impractical for real-world use because they are too slow. Here, we develop a convolutional neural network (CNN) to… Click to show full abstract

Head injury models are important tools to study concussion biomechanics but are impractical for real-world use because they are too slow. Here, we develop a convolutional neural network (CNN) to estimate regional brain strains instantly and accurately by conceptualizing head rotational velocity profiles as two-dimensional images for input. We use two impact datasets with augmentation to investigate the CNN prediction performances with a variety of training-testing configurations. Three strain measures are considered, including maximum principal strain (MPS) of the whole brain, MPS of the corpus callosum, and fiber strain of the corpus callosum. The CNN is further tested using an independent impact dataset (N = 314) measured in American football. Based on 2592 training samples, it achieves a testing R 2 of 0.916 and root mean squared error (RMSE) of 0.014 for MPS of the whole brain. Combining all impact-strain response data available (N = 3069), the CNN achieves an R 2 of 0.966 and RMSE of 0.013 in a 10-fold cross-validation. This technique may enable a clinical diagnostic capability to a sophisticated head injury model, such as facilitating head impact sensors in concussion detection via a mobile device. In addition, it may transform current acceleration-based injury studies into focusing on regional brain strains. The trained CNN is publicly available along with associated code and examples at https://github.com/Jilab-biomechanics/CNN-brain-strains. They will be updated as needed in the future.

Keywords: regional brain; brain strains; convolutional neural; neural network; brain

Journal Title: Scientific Reports
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.