LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Replication of a Printed Volatile Mold: a novel microfabrication method for advanced microfluidic systems

Photo from wikipedia

A novel and simple method to fabricate microchannels is reported based on an inkjet printing of a volatile solid mold. A liquid ink -1,6 hexanediol- ejected from a piezoelectric nozzle… Click to show full abstract

A novel and simple method to fabricate microchannels is reported based on an inkjet printing of a volatile solid mold. A liquid ink -1,6 hexanediol- ejected from a piezoelectric nozzle is instantaneously frozen when touching a cooled substrate. The created mold is then poured with PDMS. Once the PDMS is crosslinked, the ink is sublimated and the device is ready. With this approach it is possible to make microchannels on different nature surfaces such as glass, paper, uncross-linked PDMS layer or non planar substrates. The versatility of this method is illustrated by printing channels directly on commercial electrodes and measuring the channel capacitance. Moreover, millimetric height microfluidic systems are easily produced (aspect ratio $$\ge $$ ≥  25) as well as 3D structures such as bridges. To demonstrate, we have fabricated a combinatorial microfluidic system which makes 6 mixtures from 4 initial solutions without any stacking and tedious alignment procedure.

Keywords: volatile mold; replication printed; method; microfluidic systems; printed volatile

Journal Title: Scientific Reports
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.