Clinically differentiating multiple system atrophy cerebellar (MSA-C) phenotype and spinocerebellar ataxias (SCAs) is challenging especially in the early stage. We assessed diagnostic value of brain magnetic resonance imaging (MRI) in… Click to show full abstract
Clinically differentiating multiple system atrophy cerebellar (MSA-C) phenotype and spinocerebellar ataxias (SCAs) is challenging especially in the early stage. We assessed diagnostic value of brain magnetic resonance imaging (MRI) in differentiating MSA-C and SCAs based at different disease stages (<3, 3–7, and >7 years of disease duration). Overall, 186 patients with probable MSA-C and 117 with genetically confirmed SCAs were included. Hot cross bun (HCB) signs and middle cerebellar peduncle (MCP) hyperintensities were exclusively prevalent in MSA-C compared to SCAs at <3 years (HCB, 44.6% versus 0.9%; MCP hyperintensities, 38.3% versus 0.9%, respectively). Sensitivity, specificity, and positive predictive value (PPV) for HCB signs to differentiate MSA-C from SCAs were 45%, 99%, and 99% and those for MCP hyperintensities were 68%, 99%, and 99%, respectively; considering both HCB signs and MCP hyperintensities, specificity and PPV were 100%. However, the differential value of MRI signs decreased over time. MCP widths were smaller and showed more significant decrease in MSA-C than in SCAs. In conclusion, pontine and MCP changes were exclusively prominent in early stage MSA-C rather than in SCAs. Therefore, we should consider disease duration when interpreting pontine and MCP changes in brain MRIs, which will help better differentiate MSA-C and SCAs.
               
Click one of the above tabs to view related content.