Zinc (Zn) is an important microelement for rice and plays a key role in many physiological processes. This study assessed the physio-biochemical responses involved in biosynthesis of 2-acety-1-pyrroline (2-AP), which… Click to show full abstract
Zinc (Zn) is an important microelement for rice and plays a key role in many physiological processes. This study assessed the physio-biochemical responses involved in biosynthesis of 2-acety-1-pyrroline (2-AP), which is a key compound in the aroma of fragrant rice, in four different fragrant rice varieties, i.e., Meixiangzhan-2, Xiangyaxiangzhan, Ruanhuayou-134, and Yunjingyou. Four concentrations (0, 0.50, 1.00 and 2.00 g L−1) of zinc chloride were applied to fragrant rice foliage at the heading stage and named CK, Zn1, Zn2 and Zn3, respectively. Our results showed that compared with CK, the Zn1, Zn2 and Zn3 treatments all significantly increased the 2-AP concentration in mature grains of the four fragrant rice genotypes. Furthermore, exogenous application of Zn not only enhanced the activities of enzymes, including proline dehydrogenase (PDH), △1-pyrroline-5-carboxylic acid synthetase (P5CS), and diamine oxidase (DAO), which are involved in 2-AP biosynthesis, but also improved the contents of the related precursors, such as Δ1-pyrroline, proline and pyrroline-5-carboxylic acid (P5C). In addition, compared to the CK treatment, the Zn2 treatment markedly increased the net photosynthetic rate of fragrant rice during the grain filling stage and increased the seed-setting rate, 1000-grain weight and grain yield in all fragrant rice genotypes. Foliar application of Zn also markedly increased the grain Zn content. In general, 1.00 g L−1 seemed to be the most suitable application concentration because the highest 2-AP content and grain weight were recorded with this treatment.
               
Click one of the above tabs to view related content.