LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A data-driven approach to decompose motion data into task-relevant and task-irrelevant components in categorical outcome

Photo by cassidykdickens from unsplash

Decomposition of motion data into task-relevant and task-irrelevant components is an effective way to clarify the diverse features involved in motor control and learning. Several previous methods have succeeded in… Click to show full abstract

Decomposition of motion data into task-relevant and task-irrelevant components is an effective way to clarify the diverse features involved in motor control and learning. Several previous methods have succeeded in this type of decomposition while focusing on the clear relation of motion to both a specific goal and a continuous outcome, such as a 10 mm deviation from a target or 1 m/s hand velocity. In daily life, it is vital to quantify not only continuous but also categorical outcomes. For example, in baseball, batters must judge whether the opposing pitcher will throw a fastball or a breaking ball; tennis players must decide whether an opposing player will serve out wide or down the middle. However, few methods have focused on quantifying categorical outcome; thus, how to decompose motion data into task-relevant and task-irrelevant components when the outcome is categorical rather than continuous remains unclear. Here, we propose a data-driven method to decompose motion data into task-relevant and task-irrelevant components when the outcome takes categorical values. We applied our method to experimental data where subjects were required to throw fastballs or breaking balls with a similar form. Our data-driven approach can be applied to the unclear relation between motion and outcome, and the relation can be estimated in a data-driven manner. Furthermore, our method can successfully evaluate how the task-relevant components are modulated depending on the task requirements.

Keywords: motion; task; task relevant; data task; relevant task; motion data

Journal Title: Scientific Reports
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.