LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Surface Enhanced Visible Absorption of Dye Molecules in the Near-Field of Gold Nanoparticles

Photo from wikipedia

Surface enhanced absorption is a plasmonic effect parenting to surface enhanced fluorescence and Raman scattering, and it was clearly reported to occur in the infrared region of the spectrum of… Click to show full abstract

Surface enhanced absorption is a plasmonic effect parenting to surface enhanced fluorescence and Raman scattering, and it was clearly reported to occur in the infrared region of the spectrum of light. In this paper, we unambiguously show that it also occurs in the visible region of the spectrum by using a dye; i.e. an azo-dye, which exhibits a good light absorption in that region, and gold nanoparticles, which act as plasmonic nanoantennas that capture and re-radiate light, when the azo-dyes and the nanoparticles are incorporated in the bulk of solid films of polymer. In such a configuration, it is possible to use a dye concentration much larger than that of the nanoparticles and absorption path lengths much larger than those of the molecularly thin layers used in surface enhanced effects studies. In addition, the dye undergoes shape and orientation change; i.e. isomerization and reorientation, upon polarized light absorption; and the observation of surface enhanced visible absorption is done by two separate experiments; i.e. UV-visible absorption spectroscopy and photo-induced birefringence, since the signals detected from both experiments are directly proportional to the extinction coefficient of the dye. Both the dye’s absorption and photoorientation are enhanced by the presence of the nanoparticles.

Keywords: absorption; surface enhanced; gold nanoparticles; dye; visible absorption

Journal Title: Scientific Reports
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.