LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Liposomal drug delivery of Aphanamixis polystachya leaf extracts and its neurobehavioral activity in mice model

Photo from wikipedia

Neurodegenerative diseases (Alzheimer’s, Parkinson’s etc.) causes brain cell damage leading to dementia. The major restriction remains in delivering drug to the central nervous system is blood brain barrier (BBB). The… Click to show full abstract

Neurodegenerative diseases (Alzheimer’s, Parkinson’s etc.) causes brain cell damage leading to dementia. The major restriction remains in delivering drug to the central nervous system is blood brain barrier (BBB). The aim of this study was to develop a liposomal drug delivery system of Aphanamixis polystachya leaf extract for the treatment of neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease. In this study GC-MS analysis is used to determine major constituents of Aphanamixis polystachya leaf extract. Liposomal batches of Aphanamixis polystachya leaf extract was prepared using design of experiment (DoE) and characterized using Malvern zetasizer, transmission electron microscopy (TEM), and FT-IR. Stability study of blank and leaf extract loaded liposome were performed in gastric media. In-vivo neurobehavioral and anti-inflammatory studies were performed on mice and rat model respectively. GC-MS data showed that major constituents of Aphanamixis polystachya leaf extract are 2-Pentanone, different acids (Octadec-9-enoic acid, 5-Hydroxypipeloic acid etc.), and Beta-Elemene etc. Malvern Zetasizer and TEM data showed that liposome batches of Aphanamixis polystachya leaf extract were in the range of 120 - 180 nm. Interactions between process parameters and material attributes found to have more impact on the average particle size and polydispersity of liposome batches compared to the impact of each parameter in isolation. Stability studies data suggest that blank and leaf extract loaded liposomes were stable at gastric conditions after 4 hours. In-vivo neurobehavioural study data indicated that significant improvement in the memory function, locomotor activity and ambulatory performance of dementia induced mice was observed for the liposomal batches compared to merely A. polystachya leaf extract.

Keywords: leaf extract; drug; leaf; aphanamixis polystachya; polystachya leaf

Journal Title: Scientific Reports
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.