LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Continuously-tunable light–matter coupling in optical microcavities with 2D semiconductors

Photo from wikipedia

A theoretical variation between the two distinct light–matter coupling regimes, namely weak and strong coupling, becomes uniquely feasible in open optical Fabry—Pérot microcavities with low mode volume, as discussed here.… Click to show full abstract

A theoretical variation between the two distinct light–matter coupling regimes, namely weak and strong coupling, becomes uniquely feasible in open optical Fabry—Pérot microcavities with low mode volume, as discussed here. In combination with monolayers of transition-metal dichalcogenides (TMDCs) such as WS 2 , which exhibits a large exciton oscillator strength and binding energy, the room-temperature observation of hybrid bosonic quasiparticles, referred to as exciton–polaritons and characterized by a Rabi splitting, comes into reach. In this context, our simulations using the transfer-matrix method show how to tailor and alter the coupling strength actively by varying the relative field strength at the excitons’ position – exploiting a tunable cavity length, a transparent PMMA spacer layer and angle-dependencies of optical resonances. Continuously tunable coupling for future experiments is hereby proposed, capable of real-time adjustable Rabi splitting as well as switching between the two coupling regimes. Being nearly independent of the chosen material, the suggested structure could also be used in the context of light–matter-coupling experiments with quantum dots, molecules or quantum wells. While the adjustable polariton energy levels could be utilized for polariton-chemistry or optical sensing, cavities that allow working at the exceptional point promise the exploration of topological properties of that point.

Keywords: continuously tunable; light matter; matter coupling; tunable light; coupling optical

Journal Title: Scientific Reports
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.