LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Heat vortex in hydrodynamic phonon transport of two-dimensional materials

Photo by illiyapresents from unsplash

We study hydrodynamic phonon heat transport in two-dimensional (2D) materials. Starting from the Peierls-Boltzmann equation with the Callaway model approximation, we derive a 2D Guyer-Krumhansl-like equation describing hydrodynamic phonon transport,… Click to show full abstract

We study hydrodynamic phonon heat transport in two-dimensional (2D) materials. Starting from the Peierls-Boltzmann equation with the Callaway model approximation, we derive a 2D Guyer-Krumhansl-like equation describing hydrodynamic phonon transport, taking into account the quadratic dispersion of flexural phonons. In addition to Poiseuille flow, second sound propagation, the equation predicts heat current vortices and negative non-local thermal conductance in 2D materials, which are common in classical fluids but have not yet been considered in phonon transport. Our results also illustrate the universal transport behaviors of hydrodynamics, independent of the type of quasi-particles and their microscopic interactions.

Keywords: transport two; transport; hydrodynamic phonon; phonon; two dimensional; phonon transport

Journal Title: Scientific Reports
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.