LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of Laser-Beam Defocus on Microstructural Features of Compositionally Graded WC/Co-Alloy Composites Additively Manufactured by Multi-Beam Laser Directed Energy Deposition

Photo from wikipedia

Establishing processing routes for obtaining metal-matrix composites (MMCs) with uniformly-dispersed reinforcements is one of the main subjects in additively manufactured composite materials to achieve designed microstructures and mechanical properties. Here… Click to show full abstract

Establishing processing routes for obtaining metal-matrix composites (MMCs) with uniformly-dispersed reinforcements is one of the main subjects in additively manufactured composite materials to achieve designed microstructures and mechanical properties. Here we report on the microstructural features of compositionally graded WC/Co-alloy composites additively manufactured by multi-beam laser directed energy deposition (multi-beam LDED). For tailoring microstructures of compositionally graded WC/Co-alloy composites with uniformly-dispersed reinforcements, the combinational method: the laser-beam defocus function in the multi-beam LDED system and granulated powder was attempted. By laser defocusing in the multi-beam LDED system, composites with uniformly-dispersed WC particles in Co alloy matrix was successfully obtained due to melting of Co bond in WC-12 wt.%Co granulated particles. It was found that the laser defocusing of multi-beam lasers affects temperature increase of flying powder during the laser focusing area, resulting in change of processing mode from melt-pool mode to thermal spray mode. The preferable property gradients in the WC/Co-alloy composites could be obtained by controlling the feeding rate of the powders and laser-beam defocus. These experimental results demonstrated the effectiveness of the laser-beam-defocus function in the multi-beam LDED system as a key factor for tailoring microstructures of additively-manufactured functionally graded MMCs with uniformly-dispersed reinforcements.

Keywords: additively manufactured; multi beam; laser beam; alloy composites; beam

Journal Title: Scientific Reports
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.