LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Inbred varieties outperformed hybrid rice varieties under dense planting with reducing nitrogen

Photo from wikipedia

Field experiments were conducted over two years to evaluate the effects of planting density and nitrogen input rate on grain yield and nitrogen use efficiency (NUE) of inbred and hybrid… Click to show full abstract

Field experiments were conducted over two years to evaluate the effects of planting density and nitrogen input rate on grain yield and nitrogen use efficiency (NUE) of inbred and hybrid rice varieties. A significant interaction effect was observed between nitrogen input and planting density on grain yield. Higher number of panicles per square meter and spikelets per panicle largely accounted for the observed advantage in performance of inbred, relative to hybrid varieties. Compared with high nitrogen input rate, nitrogen absorption efficiency, nitrogen recovery efficiency, and partial factor productivity increased by 24.6%, 28.0%, and 33.3% in inbred varieties, and by 32.2%, 29.3%, and 35.0% in hybrids under low nitrogen input, respectively. Inbred varieties showed higher nitrogen absorption efficiency, nitrogen recovery efficiency, and partial factor productivity than hybrids, regardless of nitrogen input level. Nitrogen correlated positively with panicle number, spikelets per panicle, biomass production at flowering, and after flowering in inbred varieties but only with panicle number and biomass production at flowering in hybrids. Inbred varieties are more suitable for high planting density at reduced nitrogen input regarding higher grain yield and NUE. These findings bear important implications for achieving high yield and high efficiency in nutrient uptake and utilization in modern rice-production systems.

Keywords: nitrogen; rice; inbred varieties; efficiency; nitrogen input

Journal Title: Scientific Reports
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.