Multi-drug resistant Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), has become a worldwide, major health care problem. While initially restricted to clinical settings, drug resistant S. aureus is now one… Click to show full abstract
Multi-drug resistant Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), has become a worldwide, major health care problem. While initially restricted to clinical settings, drug resistant S. aureus is now one of the key causative agents of community-acquired infections. We have previously demonstrated that copper dependent inhibitors (CDIs), a class of antibiotics that are only active in the presence of copper ions, are effective bactericidal agents against MRSA. A second-generation CDI, APT-6K, exerted bactericidal activity at nanomolar concentrations. At sub-bactericidal concentrations, it effectively synergized with ampicillin to reverse drug resistance in multiple MRSA strains. APT-6K had a favorable therapeutic index when tested on eukaryotic cells (TI: > 30) and, unlike some previously reported CDIs, did not affect mitochondrial activity. These results further establish inhibitors that are activated by the binding of transition metal ions as a promising class of antibiotics, and for the first time, describe their ability to reverse existing drug resistance against clinically relevant antibiotics.
               
Click one of the above tabs to view related content.