The Dongting Lake area (China) is a climate change-sensitive and ecologically fragile area and plays a crucial role in the regulation of the regional climate. In recent decades, rapid social… Click to show full abstract
The Dongting Lake area (China) is a climate change-sensitive and ecologically fragile area and plays a crucial role in the regulation of the regional climate. In recent decades, rapid social and economic development has led to increased land use/land cover (LULC) changes in the Dongting Lake area, which affect the surface energy balance and hydrological processes. Its contemporary variability under climate change remains highly uncertain. Therefore, we retrieved the Land surface temperature (LST) from the Landsat 7 data and explored its relationship with the LULC types. The results showed that LST is significantly affected by surface type. LST varied significantly across LULC types, with higher LSTs in built-up land, reed beach land, forest land, and paddy fields than in water bodies, mud beaches, marshlands, and riparian forests. Water bodies play an important regulatory role in reducing LST and mitigating thermal effects on the ground. The winter LST in the study area increased by approximately 3.5 °C, which may be related to the decrease in the area of Dongting Lake water bodies, water fields and reed flats after the Three Gorges Reservoir was impounded. Compared with the relationship between the NDVI, DEM, and distance from the water body, the negative correlation between the NDMI and LST was stronger and more stable and had the greatest effect on LST. These insights improve the understanding of the land change consequences on the temporal dynamics of LST.
               
Click one of the above tabs to view related content.