LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Neuromotor Regulation of Ankle Stiffness is Comparable to Regulation of Joint Position and Torque at Moderate Levels

Photo from wikipedia

Joint mechanical impedance, which describes the instantaneous relationship between kinematic perturbations and the resulting torque response, plays an important role in the way humans ambulate, interact with the environment, and… Click to show full abstract

Joint mechanical impedance, which describes the instantaneous relationship between kinematic perturbations and the resulting torque response, plays an important role in the way humans ambulate, interact with the environment, and respond to disturbances. Recent studies have quantified how the stiffness component of mechanical impedance varies during walking. However, the extent to which humans can voluntarily regulate leg joint stiffness is not yet known. Our study sought to quantify the accuracy and precision of the neuromotor system to voluntarily regulate ankle joint stiffness while seated, and compare these data to the well-known abilities to regulate ankle joint torque and position. We tested individuals’ ability to to regulate these quantities at three different magnitudes: 20%, 40%, and 60% of a maximum value. Our results showed that subjects were able to voluntarily regulate ankle joint stiffness, and that the normalized accuracy and precision of stiffness regulation were not different than those of position or torque for targets at magnitudes of 20% of a maximum value. However, the accuracy and precision of stiffness regulation were statistically different than those of position and torque for targets at magnitudes of 40% of the maximum values. At moderate targets, the similarity of the ability to regulate ankle joint stiffness when compared to the abilities to regulate joint torque and position highlights the importance of a comprehensive description of lower-limb biomechanics that includes consideration of joint mechanical impedance, in addition to the common descriptions of joint torque and position.

Keywords: joint stiffness; stiffness; position; position torque; regulation

Journal Title: Scientific Reports
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.