LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The dynamics of large silicic systems from satellite remote sensing observations: the intriguing case of Domuyo volcano, Argentina

Photo from wikipedia

Silicic magmatic systems are the most dangerous volcanoes on Earth, capable of large and catastrophic eruptions, yet their low eruptive frequency makes it challenging to interpret their short-term unrest. Here… Click to show full abstract

Silicic magmatic systems are the most dangerous volcanoes on Earth, capable of large and catastrophic eruptions, yet their low eruptive frequency makes it challenging to interpret their short-term unrest. Here we present a decade-plus analysis that integrates, for the first time, time series of satellite interferometric synthetic aperture radar (InSAR) surface deformation and satellite thermal infrared edifice-scale surface warming at a large silicic system: Domuyo volcano, in Argentina. We find that deformation and warming are highly correlated, and depending on the sign and lag between the time series, either shallow sealing or magma influx could drive Domuyo’s ongoing inflation (~ 0.15 m/year; from an InSAR-derived tabular source, ~ 11 × 8 × 1 km; ~ 6.5 km depth; ~ 0.037 km3/year volume-change rate) and warming (0.3–0.4 °C/year). This study shows the potential that combined satellite surface deformation and edifice-scale surface warming time series have on assessing the physical mechanisms of silicic volcanic systems and for constraining deterministic models.

Keywords: surface; time; volcano argentina; large silicic; domuyo volcano

Journal Title: Scientific Reports
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.