LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Phenotypic effects of paralogous ribosomal proteins bL31A and bL31B in E. coli

Photo from wikipedia

Ribosomes are essential macromolecular complexes conducting protein biosynthesis in all domains of life. Cells can have heterogeneous ribosomes, i.e. ribosomes with various ribosomal RNA and ribosomal protein (r-protein) composition. However,… Click to show full abstract

Ribosomes are essential macromolecular complexes conducting protein biosynthesis in all domains of life. Cells can have heterogeneous ribosomes, i.e. ribosomes with various ribosomal RNA and ribosomal protein (r-protein) composition. However, the functional importance of heterogeneous ribosomes has remained elusive. One of the possible sources for ribosome heterogeneity is provided by paralogous r-proteins. In E. coli, ribosomal protein bL31 has two paralogs: bL31A encoded by rpmE and bL31B encoded by ykgM. This study investigates phenotypic effects of these ribosomal protein paralogs using bacterial strains expressing only bL31A or bL31B. We show that bL31A confers higher fitness to E. coli under lower temperatures. In addition, bL31A and bL31B have different effects on translation reading frame maintenance and apparent translation processivity in vivo as demonstrated by dual luciferase assay. In general, this study demonstrates that ribosomal protein paralog composition (bL31A versus bL31B) can affect cell growth and translation outcome.

Keywords: effects paralogous; phenotypic effects; bl31a bl31b; ribosomal protein

Journal Title: Scientific Reports
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.