LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Real-time metabolic profiling of oesophageal tumours reveals an altered metabolic phenotype to different oxygen tensions and to treatment with Pyrazinib

Photo from wikipedia

Oesophageal cancer is the 6th most common cause of cancer related death worldwide. The current standard of care for oesophageal adenocarcinoma (OAC) focuses on neoadjuvant therapy with chemoradiation or chemotherapy,… Click to show full abstract

Oesophageal cancer is the 6th most common cause of cancer related death worldwide. The current standard of care for oesophageal adenocarcinoma (OAC) focuses on neoadjuvant therapy with chemoradiation or chemotherapy, however the 5-year survival rates remain at < 20%. To improve treatment outcomes it is critical to further investigate OAC tumour biology, metabolic phenotype and their metabolic adaptation to different oxygen tensions. In this study, by using human ex-vivo explants we demonstrated using real-time metabolic profiling that OAC tumour biopsies have a significantly higher oxygen consumption rate (OCR), a measure of oxidative phosphorylation compared to extracellular acidification rate (ECAR), a measure of glycolysis (p = 0.0004). Previously, we identified a small molecule compound, pyrazinib which enhanced radiosensitivity in OAC. Pyrazinib significantly inhibited OCR in OAC treatment-naïve biopsies (p = 0.0139). Furthermore, OAC biopsies can significantly adapt their metabolic rate in real-time to their environment. Under hypoxic conditions pyrazinib produced a significant reduction in both OCR (p = 0.0313) and ECAR in OAC treatment-naïve biopsies. The inflammatory secretome profile from OAC treatment-naïve biopsies is heterogeneous. OCR was positively correlated with three secreted factors in the tumour conditioned media: vascular endothelial factor A (VEGF-A), IL-1RA and thymic stromal lymphopoietin (TSLP). Pyrazinib significantly inhibited IL-1β secretion (p = 0.0377) and increased IL-3 (p = 0.0020) and IL-17B (p = 0.0181). Importantly, pyrazinib did not directly alter the expression of dendritic cell maturation markers or reduce T-cell viability or activation markers. We present a new method for profiling the metabolic rate of tumour biopsies in real-time and demonstrate the novel anti-metabolic and anti-inflammatory action of pyrazinib ex-vivo in OAC tumours, supporting previous findings in-vitro whereby pyrazinib significantly enhanced radiosensitivity in OAC.

Keywords: oxygen; oac; real time; treatment; pyrazinib

Journal Title: Scientific Reports
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.