LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Morphological and genome-wide evidence for natural hybridisation within the genus Stipa (Poaceae)

Photo from wikipedia

Hybridisation in the wild between closely related species is a common mechanism of speciation in the plant kingdom and, in particular, in the grass family. Here we explore the potential… Click to show full abstract

Hybridisation in the wild between closely related species is a common mechanism of speciation in the plant kingdom and, in particular, in the grass family. Here we explore the potential for natural hybridisation in Stipa (one of the largest genera in Poaceae) between genetically distant species at their distribution edges in Mountains of Central Asia using integrative taxonomy. Our research highlights the applicability of classical morphological and genome reduction approaches in studies on wild plant species. The obtained results revealed a new nothospecies, Stipa × lazkovii, which exhibits intermediate characters to S. krylovii and S. bungeana. A high-density DArTseq assay disclosed that S. × lazkovii is an F1 hybrid, and established that the plastid and mitochondrial DNA was inherited from S. bungeana. In addition, molecular markers detected a hybridisation event between morphologically and genetically distant species S. bungeana and probably S. glareosa. Moreover, our findings demonstrated an uncertainty on the taxonomic status of S. bungeana that currently belongs to the section Leiostipa, but it is genetically closer to S. breviflora from the section Barbatae. Finally, we noticed a discrepancy between the current molecular data with the previous findings on S. capillata and S. sareptana.

Keywords: natural hybridisation; genome wide; hybridisation; morphological genome; wide evidence; evidence natural

Journal Title: Scientific Reports
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.