LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The chirality origin of retinal-carotenoid complex in gloeobacter rhodopsin: a temperature-dependent excitonic coupling

Photo by nci from unsplash

Retinal proteins play significant roles in light-induced protons/ions transport across the cell membrane. A recent studied retinal protein, gloeobacter rhodopsin (gR), functions as a proton pump, and binds the carotenoid… Click to show full abstract

Retinal proteins play significant roles in light-induced protons/ions transport across the cell membrane. A recent studied retinal protein, gloeobacter rhodopsin (gR), functions as a proton pump, and binds the carotenoid salinixanthin (sal) in addition to the retinal chromophore. We have studied the interactions between the two chromophores as reflected in the circular dichroism (CD) spectrum of gR complex. gR exhibits a weak CD spectrum but following binding of sal, it exhibits a significant enhancement of the CD bands. To examine the CD origin, we have substituted the retinal chromophore of gR by synthetic retinal analogues, and have concluded that the CD bands originated from excitonic interaction between sal and the retinal chromophore as well as the sal chirality induced by binding to the protein. Temperature increase significantly affected the CD spectra, due to vanishing of excitonic coupling. A similar phenomenon of excitonic interaction lose between chromophores was recently reported for a photosynthetic pigment-protein complex (Nature Commmun, 9, 2018, 99). We propose that the excitonic interaction in gR is weaker due to protein conformational alterations. The excitonic interaction is further diminished following reduction of the retinal protonated Schiff base double bond. Furthermore, the intact structure of the retinal ring is necessary for obtaining the excitonic interaction.

Keywords: protein; excitonic coupling; gloeobacter rhodopsin; excitonic interaction; interaction

Journal Title: Scientific Reports
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.