LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A novel fusion based on the evolutionary features for protein fold recognition using support vector machines

Photo from wikipedia

Protein fold recognition plays a crucial role in discovering three-dimensional structure of proteins and protein functions. Several approaches have been employed for the prediction of protein folds. Some of these… Click to show full abstract

Protein fold recognition plays a crucial role in discovering three-dimensional structure of proteins and protein functions. Several approaches have been employed for the prediction of protein folds. Some of these approaches are based on extracting features from protein sequences and using a strong classifier. Feature extraction techniques generally utilize syntactical-based information, evolutionary-based information and physicochemical-based information to extract features. In recent years, finding an efficient technique for integrating discriminate features have been received advancing attention. In this study, we integrate Auto-Cross-Covariance and Separated dimer evolutionary feature extraction methods. The results’ features are scored by Information gain to define and select several discriminated features. According to three benchmark datasets, DD, RDD ,and EDD, the results of the support vector machine show more than 6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}% improvement in accuracy on these benchmark datasets.

Keywords: information; support vector; features protein; protein fold; fold recognition

Journal Title: Scientific Reports
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.