DNA double-strand breaks (DSB) are formed by various exogenous and endogenous factors and are repaired by homologous recombination and non-homologous end joining (NHEJ). DNA-dependent protein kinase (DNA-PK) is the principal… Click to show full abstract
DNA double-strand breaks (DSB) are formed by various exogenous and endogenous factors and are repaired by homologous recombination and non-homologous end joining (NHEJ). DNA-dependent protein kinase (DNA-PK) is the principal enzyme for NHEJ. We explored the role and the underlying mechanism of cAMP signaling in the NHEJ repair of DSBs resulted from gamma ray irradiation to non-small cell lung cancer (NSLC) cells. Activated cAMP signaling by expression of an activated stimulatory GTP-binding protein or by pretreatment with isoproterenol and prostaglandin E2, delayed the repair of DSBs resulted from gamma ray irradiation, and the delaying effects depended on protein kinase A (PKA). Activated cAMP signaling suppressed XRCC4 and DNA ligase IV recruitment into DSB foci, and reduced phosphorylation at T2609 in DNA-PK catalytic subunit (DNA-PKcs) with a concomitant increase in phosphorylation at S2056 in PKA-dependent ways following gamma ray irradiation. cAMP signaling decreased phosphorylation of T2609 by protein phosphatase 2A-dependent inhibition of ATM. We conclude that cAMP signaling delays the repair of gamma ray-induced DNA DSBs in NSLC cells by inhibiting NHEJ via PKA-dependent pathways, and that cAMP signaling differentially modulates DNA-PKcs phosphorylation at S2056 and T2609, which might contribute to the inhibition of NHEJ in NSLC cells.
               
Click one of the above tabs to view related content.