A highly cost-effective recycled biomaterial extracted from lime peel has been made biocompatible and has been coated on a commercial fluorine-doped tin oxide (FTO) substrate of glass using the spin… Click to show full abstract
A highly cost-effective recycled biomaterial extracted from lime peel has been made biocompatible and has been coated on a commercial fluorine-doped tin oxide (FTO) substrate of glass using the spin coating method. Structural, morphologic, electronic, and antibacterial measurements were thoroughly characterized as a green biomaterial thin film using X-rays (XRD), PL, FTIR, Raman, SEM, HRTEM, AFM, IāV, and antibacterial diffusion techniques. The comprehensive analysis of structures of recyclable waste in the form of lime peel extract (LPE) as thin films showed the crystalline cellulose structure that corresponds to the lattice fringe (0.342 nm) exposed by HRTEM. The K+1 interstitial active sites or vacancies in LPE/FTO thin films are confirmed by the PL spectra that show important evidence about conduction mechanisms, and hence facilitates Ag+1 ion migration from the top to the bottom electrode. The AFM investigations revealed the minor surface roughness (169.61 nm) of the LPE/FTO film, which controls the current leakage that is associated with surface defects. The designed memory cell (Ag/LPE/FTO) exhibits stable, reproducible electrical switching under low operational voltage and is equipped with excellent retention over 5āĆā103 s. Furthermore, owing to presence of flavonoids and their superior antioxidant nature, lime peel extract powder shows tremendous antimicrobial activity against gram-positive and Gram-negative bacterial strains.
               
Click one of the above tabs to view related content.