LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Semi-automated identification of biological control agent using artificial intelligence

Photo from wikipedia

The accurate identification of biological control agents is necessary for monitoring and preventing contamination in integrated pest management (IPM); however, this is difficult for non-taxonomists to achieve in the field.… Click to show full abstract

The accurate identification of biological control agents is necessary for monitoring and preventing contamination in integrated pest management (IPM); however, this is difficult for non-taxonomists to achieve in the field. Many machine learning techniques have been developed for multiple applications (e.g., identification of biological organisms). Some phytoseiids are biological control agents for small pests, such as Neoseiulus barkeri Hughes. To identify a precise biological control agent, a boosting machine learning classification, namely eXtreme Gradient Boosting (XGBoost), was introduced in this study for the semi-automated identification of phytoseiid mites. XGBoost analyses were based on 22 quantitative morphological features among 512 specimens of N. barkeri and related phytoseiid species. These features were extracted manually from photomicrograph of mites and included dorsal and ventrianal shield lengths, setal lengths, and length and width of spermatheca. The results revealed 100% accuracy rating, and seta j4 achieved significant discrimination among specimens. The present study provides a path through which skills and experiences can be transferred between experts and non-experts. This can serve as a foundation for future studies on the automated identification of biological control agents for IPM.

Keywords: control; automated identification; identification biological; control agent; biological control; semi automated

Journal Title: Scientific Reports
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.