LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Body temperature-dependent microRNA expression analysis in rats: rno-miR-374-5p regulates apoptosis in skeletal muscle cells via Mex3B under hypothermia

Photo by dawson2406 from unsplash

Forensic diagnosis of fatal hypothermia is considered difficult because there are no specific findings. Accordingly, exploration of novel fatal hypothermia-specific findings is important. To elucidate the molecular mechanism of homeostasis… Click to show full abstract

Forensic diagnosis of fatal hypothermia is considered difficult because there are no specific findings. Accordingly, exploration of novel fatal hypothermia-specific findings is important. To elucidate the molecular mechanism of homeostasis in hypothermia and identify novel molecular markers to inform the diagnosis of fatal hypothermia, we focused on microRNA expression in skeletal muscle, which plays a role in cold-induced thermogenesis in mammals. We generated rat models of mild, moderate, and severe hypothermia, and performed body temperature-dependent microRNA expression analysis of the iliopsoas muscle using microarray and quantitative real-time PCR (qRT-PCR). The results show that rno-miR-374-5p expression was significantly induced only by severe hypothermia. Luciferase reporter assay and qRT-PCR results indicated that Mex3B expression was regulated by rno-miR-374-5p and decreased with decreasing body temperature. Gene ontology analysis indicated the involvement of Mex3B in positive regulation of GTPase activity. siRNA analysis showed that Mex3B directly or indirectly regulated Kras expression in vitro, and significantly changed the expression of apoptosis-related genes and proteins. Collectively, these results indicate that rno-miR-374-5p was activated by a decrease in body temperature, whereby it contributed to cell survival by suppressing Mex3B and activating or inactivating Kras. Thus, rno-miR-374-5p is a potential supporting marker for the diagnosis of fatal hypothermia.

Keywords: hypothermia; analysis; rno mir; expression; mir 374; body temperature

Journal Title: Scientific Reports
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.