LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Association of mprF mutations with cross-resistance to daptomycin and vancomycin in methicillin-resistant Staphylococcus aureus (MRSA)

We first reported a phenomenon of cross-resistance to vancomycin (VCM) and daptomycin (DAP) in methicillin-resistant Staphylococcus aureus (MRSA) in 2006, but mechanisms underlying the cross-resistance remain incompletely understood. Here, we… Click to show full abstract

We first reported a phenomenon of cross-resistance to vancomycin (VCM) and daptomycin (DAP) in methicillin-resistant Staphylococcus aureus (MRSA) in 2006, but mechanisms underlying the cross-resistance remain incompletely understood. Here, we present a follow-up study aimed to investigate genetic determinants associated with the cross-resistance. Using 12 sets of paired DAP susceptible (DAPS) and DAP non-susceptible (DAPR) MRSA isolates from 12 patients who had DAP therapy, we (i) assessed susceptibility to DAP and VCM, (ii) compared whole-genome sequences, (iii) identified mutations associated with cross-resistance to DAP and VCM, and (iv) investigated the impact of altered gene expression and metabolic pathway relevant to the cross-resistance. We found that all 12 DAPR strains exhibiting cross-resistance to DAP and VCM carried mutations in mprF, while one DAPR strain with reduced susceptibility to only DAP carried a lacF mutation. On the other hand, among the 32 vancomycin-intermediate S. aureus (VISA) strains isolated from patients treated with VCM, five out of the 18 strains showing cross-resistance to DAP and VCM carried a mprF mutation, while 14 strains resistant to only VCM had no mprF mutation. Moreover, substitution of mprF in a DAPS strain with mutated mprF resulted in cross-resistance and vice versa. The elevated lysyl-phosphatidylglycerol (L-PG) production, increased positive bacterial surface charges and activated cell wall (CW) synthetic pathways were commonly found in both clinical isolates and laboratory-developed mutants that carry mprF mutations. We conclude that mprF mutation is responsible for the cross-resistance of MRSA to DAP and VCM, and treatment with DAP is more likely to select for mprF-mediated cross-resistance than is with VCM.

Keywords: cross resistance; vcm; mprf; resistance; dap

Journal Title: Scientific Reports
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.