Hybrid nanocellulose-based foams are a desirable class of low-density and porous materials for their potential in many applications. This study aims at characterizing and understanding the structure-properties relationship of four… Click to show full abstract
Hybrid nanocellulose-based foams are a desirable class of low-density and porous materials for their potential in many applications. This study aims at characterizing and understanding the structure-properties relationship of four foam formulations prepared from combinations of cellulose nanofibrils (CNF), cellulose nanocrystals (CNC), and kaolin-microfibrillated cellulose composite. All the foams were crosslinked with a polyamide-epichlorohydrin crosslinker (Polycup) to impart stability under wet conditions without additional functionalization. Foams containing 25 wt% kaolin exhibited excellent shape recovery promoted by a higher load of crosslinker (5 wt%), and superior compressive properties. The addition of CNC at 33.3 wt% and 50 wt% did not seem to enhance the properties of the foam and also reduced the specific surface area. A preliminary comparative study between the four tested formulations was conducted to assess the feasibility of the foam as an adsorbent of methylene blue dye.
               
Click one of the above tabs to view related content.