LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Understanding solute effect on grain boundary strength based on atomic size and electronic interaction

Photo from wikipedia

Solute segregating to grain boundary can stabilize the microstructure of nanocrystalline materials, but a lot of solutes also cause embrittlement effect on interfacial strength. Therefore, uncovering the solute effect on… Click to show full abstract

Solute segregating to grain boundary can stabilize the microstructure of nanocrystalline materials, but a lot of solutes also cause embrittlement effect on interfacial strength. Therefore, uncovering the solute effect on grain boundary strength is very important for nanocrystalline alloys design. In this work, we have systematically studied the effects of various solutes on the strength of a Σ5 (310) grain boundary in Cu by first-principle calculations. The solute effects are closely related to the atomic radius of solutes and electronic interactions between solutes and Cu. The solute with a larger atomic radius is easier to segregate the grain boundary but causes more significant grain boundary embrittlement. The weak electronic interactions between the s- and p-block solutes and Cu play a very limited role in enhancing grain boundary strength. While the strong d-states electronic interactions between transition metallic solutes and Cu can counteract embrittlement caused by size mismatch and significantly improve the grain boundary strength. This work deepens our understanding of solute effects on grain boundary strength based on atomic size and electronic interactions.

Keywords: grain boundary; effect; size; grain; boundary strength

Journal Title: Scientific Reports
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.