LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Functional interaction between Ghrelin and GLP-1 regulates feeding through the vagal afferent system

The gastrointestinal tract transmits feeding-regulatory signals to the brain via neuronal and hormonal pathways. Here we studied the interaction between the orexigenic gastric peptide, ghrelin, and the anorectic intestinal peptide,… Click to show full abstract

The gastrointestinal tract transmits feeding-regulatory signals to the brain via neuronal and hormonal pathways. Here we studied the interaction between the orexigenic gastric peptide, ghrelin, and the anorectic intestinal peptide, glucagon-like peptide 1 (GLP-1), in terms of feeding regulation via the vagal afferents. GLP-1 preadministration 30 min before ghrelin administration to rats and mice abolished ghrelin-induced food intake, while ghrelin preadministration abolished the anorectic effect of GLP-1. Ghrelin preadministration suppressed GLP-1-induced Fos expression in the nodose ganglia (NG). Electrophysiological assessment confirmed that the initially administered peptide abolished the vagal afferent electrical alteration induced by the subsequently administered peptide. Both the growth hormone secretagogue receptor (GHSR) and the GLP-1 receptor (GLP-1R) are co-localised in a major proportion of NG neurons that innervate the stomach. In these Ghsr+Glp1r+ neurons, ghrelin preadministration abolished the GLP-1-induced calcium response. Ghrelin generated a hyperpolarising current and GLP-1 generated a depolarising current in isolated NG neurons in a patch-clamp experiment. Ghrelin and GLP-1 potently influenced each other in terms of vagally mediated feeding regulation. This peptidergic interaction allows for fine control of the electrophysiological properties of NG neurons.

Keywords: vagal afferent; glp; preadministration; interaction; ghrelin glp; ghrelin

Journal Title: Scientific Reports
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.