LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modification of large area Cu2O/CuO photocathode with CuS non-noble catalyst for improved photocurrent and stability

Photo from wikipedia

In this work, a three-layered heterostructure Cu2O/CuO/CuS was obtained through a low-cost and large-area fabrication route comprising electrodeposition, thermal oxidation, and reactive annealing in a sulfur atmosphere. Morphological, microstructural, and… Click to show full abstract

In this work, a three-layered heterostructure Cu2O/CuO/CuS was obtained through a low-cost and large-area fabrication route comprising electrodeposition, thermal oxidation, and reactive annealing in a sulfur atmosphere. Morphological, microstructural, and compositional analysis (AFM, SEM, XRD, EDS, XPS) were carried out to highlight the surface modification of cuprous oxide film after oxidation and subsequent sulfurization. Impedance, voltammetric, and amperometric photoelectrochemical tests were performed on Cu2O, Cu2O/CuO, and Cu2O/CuO/CuS photocathodes in a sodium sulfate solution (pH 5), under 100 mW cm−2 AM 1.5 G illumination. A progressive improvement in terms of photocurrent and stability was observed after oxidation and sulfurization treatments, reaching a maximum of − 1.38 mA cm−2 at 0 V versus RHE for the CuS-modified Cu2O/CuO electrode, corresponding to a ~ 30% improvement. The feasibility of the proposed method was demonstrated through the fabrication of a large area photoelectrode of 10 cm2, showing no significant differences in characteristics if compared to a small area photoelectrode of 1 cm2.

Keywords: cus; cuo; cu2o cuo; large area

Journal Title: Scientific Reports
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.