LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Damage-free highly efficient plasma-assisted polishing of a 20-mm square large mosaic single crystal diamond substrate

Photo from wikipedia

Plasma-assisted polishing (PAP) as a damage-free and highly efficient polishing technique has been widely applied to difficult-to-machine wide-gap semiconductor materials such as 4H-SiC (0001) and GaN (0001). In this study,… Click to show full abstract

Plasma-assisted polishing (PAP) as a damage-free and highly efficient polishing technique has been widely applied to difficult-to-machine wide-gap semiconductor materials such as 4H-SiC (0001) and GaN (0001). In this study, a 20-mm square large mosaic single crystal diamond (SCD) substrate synthesized by microwave plasma chemical vapor deposition (CVD) was polished by PAP. Argon-based plasma containing oxygen was used in PAP to modify the surface of quartz glass polishing plate, and a high material removal rate (MRR) of 13.3 μm/h was obtained. The flatness of SCD polished by PAP measured by an interferometer was 0.5 μm. The surface roughness measured by both scanning white light interferometer (SWLI) (84-μm square) and atomic force microscope (AFM) (5-μm square) was less than 0.5 nm Sq. The micro-Raman spectroscopy measurement results of mosaic SCD substrate processed by PAP showed that residual stress and non-diamond components on the surface after PAP processing were below the detection limit.

Keywords: damage free; plasma; plasma assisted; diamond; assisted polishing; substrate

Journal Title: Scientific Reports
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.