LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Computational exploration of copper catalyzed vinylogous aerobic oxidation of unsaturated compounds

Photo by brucemars from unsplash

Selective oxidation is one of the most important and challenging transformations in both academic research and chemical industry. Recently, a highly selective and efficient way to synthesize biologically active γ-hydroxy-α,β-unsaturated… Click to show full abstract

Selective oxidation is one of the most important and challenging transformations in both academic research and chemical industry. Recently, a highly selective and efficient way to synthesize biologically active γ-hydroxy-α,β-unsaturated molecules from Cu-catalyzed vinylogous aerobic oxidation of α,β- and β,γ-unsaturated compounds has been developed. However, the detailed reaction mechanism remains elusive. Herein, we report a density functional theory study on this Cu-catalyzed vinylogous aerobic oxidation of γ,γ-disubstituted α,β- and β,γ-unsaturated isomers. Our computational study unveils detailed mechanism for each elementary step, i.e. deprotonation, O2 activation, and reduction. Besides, the origin of regioselectivity, divergent reactivities of substrates as well as reducing agents, and the byproduct generation have also been investigated. Notably, the copper catalyst retains the + 2 oxidation state through the whole catalytic cycle and plays essential roles in multiple steps. These findings would provide hints on mechanistic studies and future development of transition metal-catalyzed aerobic oxidation reactions.

Keywords: oxidation; vinylogous aerobic; oxidation unsaturated; aerobic oxidation; unsaturated compounds; catalyzed vinylogous

Journal Title: Scientific Reports
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.