LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Interindividual heterogeneity affects the outcome of human cardiac tissue decellularization

Photo from wikipedia

The extracellular matrix (ECM) of engineered human cardiac tissues corresponds to simplistic biomaterials that allow tissue assembly, or animal derived off-the-shelf non-cardiac specific matrices. Decellularized ECM from human cardiac tissue… Click to show full abstract

The extracellular matrix (ECM) of engineered human cardiac tissues corresponds to simplistic biomaterials that allow tissue assembly, or animal derived off-the-shelf non-cardiac specific matrices. Decellularized ECM from human cardiac tissue could provide a means to improve the mimicry of engineered human cardiac tissues. Decellularization of cardiac tissue samples using immersion-based methods can produce acceptable cardiac ECM scaffolds; however, these protocols are mostly described for animal tissue preparations. We have tested four methods to decellularize human cardiac tissue and evaluated their efficiency in terms of cell removal and preservation of key ECM components, such as collagens and sulfated glycosaminoglycans. Extended exposure to decellularization agents, namely sodium dodecyl sulfate and Triton-X-100, was needed to significantly remove DNA content by approximately 93% in all human donors. However, the biochemical composition of decellularized tissue is affected, and the preservation of ECM architecture is donor dependent. Our results indicate that standardization of decellularization protocols for human tissue is likely unfeasible, and a compromise between cell removal and ECM preservation must be established in accordance with the scaffold’s intended application. Notwithstanding, decellularized human cardiac ECM supported human induced pluripotent-derived cardiomyocyte (hiPSC-CM) attachment and retention for up to 2 weeks of culture, and promoted cell alignment and contraction, providing evidence it could be a valuable tool for cardiac tissue engineering.

Keywords: decellularization; interindividual heterogeneity; cardiac tissue; tissue; human cardiac; ecm

Journal Title: Scientific Reports
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.